
Transcoding: ANewStrategy forRelayChannels
Dennis Ogbe, Chih-Chun Wang, David J. Love
Purdue University, School of Electrical and Computer Engineering, West Lafayette, IN 47907, USA

Rise of Multi-hop, Low-latency Communication
I Number of wireless devices continues to grow
I Many “new” devices will be low-power Internet of Things
(IoT) devices

I Potentially no direct connection to base station
I Cellular: Move to small cell networks, in-band wireless
(self-)backhauling

Small cell network with wireless backhaul

I Additionally: Growing focus on low latency
I Sub-1ms latency in IMT-2020

The Relay Channel:
A Classic Problem in Information Theory

I Lots of focus from industry & academia since 1970s

I Many different design philosophies:
Compress-&-Forward [1], Hash-&-Forward [2],
Compute-&-Forward [3], Noisy Network Coding [4]

I De-facto industry standard: Decode-&-Forward (DF) [1]
I Traditional schemes focus on capacity rather than
delay performance (⇒ long block lengths)

I Our interest: Low latency, short, finite block lengths
I Amplify-&-Forward (AF) gives best delay performance but
suffers throughput loss due to noise build-up

Separated Two-hop Relay Channel
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I No connection between source and destination
I “Degraded” relay channel, DF achieves capacity (with
infinite delay)

Decode-&-Forward
I Error control through coding at source and relay
I End-to-end delay: T = T1 + T2
I Pipelined coding rate:

RDF (T, ε) = logM
max (T1, T2)
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Amplify-&-Forward
I No error correction at relay ⇒ noise accumulation
I End-to-end delay: T = T1 + 1
I Pipelined coding rate:

RAF (T, ε) = logM
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Transcoding as “middle ground” between AF and DF
I Can be viewed as “smart” AF with error protection
I Improved coding rate in low latency regime

Transcoding
I Idea: Relay processes sub-blocks of size ∆
I Structure in sub-blocks ⇒ Error control at relay
I End-to-end delay: T = T1 + ∆
I Pipelined coding rate:

RTC(T, ε) = logM
T1
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Example: ∆ = 8 [5]
I Binary symmetric channel on both hops
I Take sub-blocks from (8,4) extended Hamming Code
I Parameters: p1 = 0.04, p2 = 0.13, ε = 10−3

I Normal approximation [6] to evaluate rate-delay tradeoff
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Ongoing Work
I Random code construction & analysis
I General transcoder design theory
I Extension to multi-hop & fading channels
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