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Abstract—We present a technique to jointly estimate the
channel taps and the frequency offset due to the Doppler effect
of a special class of doubly-dispersive aeronautical channels. The
algorithm includes the use of pulse-repetition techniques at the
transmitter and the “power method” subspace iteration at the re-
ceiver. We show that transmitting CAZAC sequences for channel
sounding yields estimators with low computational complexity.
Numerical simulations indicate performance comparable to the
estimation-theoretic lower bound.

Index Terms—Doubly dispersive channel, Doppler effect, chan-
nel estimation, power method, CAZAC sequence

I. INTRODUCTION

THE performance of modern wireless communication sys-
tems fundamentally depends on the quality of the channel

estimates at either the receiver, the transmitter, or both. This
statement holds of course for aerial wireless communication
systems, which have recently experienced a resurgence of
interest from both the academic and industrial community.
Aerial communication systems, especially those based on
unmanned aerial vehicle (UAV) platforms, are considered
enabling technologies for future wireless networks like the
consumer-oriented fifth-generation (5G) cellular networks and
ad-hoc public safety networks. [1] In addition to 5G appli-
cations like UAV control and video streaming, aerial com-
munication systems are actively being researched, developed,
and deployed as part of the ongoing effort to increase the
number of people connected to the Internet, lead by initiatives
like Google’s balloon-based “Project Loon” [2]. These efforts
seek to increase the availability of low-cost Internet access by
connecting a distributed set of airborne transmitters through
wireless backhaul. Furthermore, apart from being considered
for future communication networks, aerial wireless commu-
nication systems continue to play a significant role in other
civilian applications like air traffic control as well as in a
variety of military applications.

In addition to the time dispersion due to multipath propaga-
tion present in many wireless channels, the effects of vehicular
motion inherent to aeronautical communication systems may
induce frequency dispersion due to the Doppler effect [3]. The
general class of channels exhibiting both time dispersive and
frequency dispersive effects, usually referred to as doubly dis-
persive channels, is continuing to attract considerable interest
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from researchers and practitioners, in part due to its ubiquity
in modern wireless communication systems, e.g., [4]–[10]. In
the classical channel estimation followed by data transmission
set-up, which we follow in this manuscript, it is thus desirable
from a channel estimation perspective to obtain knowledge
of the parameters governing both the time dispersion of the
channel—assumed to be modeled as a discrete-time tapped
delay line [11]—as well as the frequency dispersion, here
assumed to be mainly caused by the Doppler effect due to
vehicular motion.

The specific model we introduce and consider in this
manuscript arises from our consideration of communication
systems on high-velocity airborne vehicles. The general model
of doubly dispersive channels where the frequency dispersion
is due to Doppler assumes that the Doppler effect and thus
the resulting frequency shift varies for each multipath com-
ponent of the channel, resulting in a Doppler spectrum. In
this manuscript however, we assume that for high-velocity
airborne vehicles the Doppler spectrum is dominated by the
bulk frequency shift due to the motion of the vehicle (see
Section II), rendering the individual shifts on each multipath
component negligible in our analysis.

The model and corresponding estimation problem of a
single bulk frequency shift coupled with multipath transmis-
sion mirrors the well-researched problem of estimating the
frequency offset in orthogonal frequency division multiplexing
(OFDM) systems. The tightly-spaced subcarriers in OFDM
systems lose orthogonality in the presence of any kind of
frequency offset, resulting in inter-channel interference. It has
been shown that the bit error rate increases significantly if
those offsets are left uncompensated [12].

The popularity of OFDM in modern communication sys-
tems has lead to the development of many different techniques
to estimate and compensate for the frequency offset due to the
Doppler effect and/or mismatches between the transmitter and
receiver local oscillators. In general, the available frequency
offset estimators can be classified into two categories. Blind
techniques provide estimates of the frequency offset without
the need for pilot symbols. The technique in [13] exploits the
cyclostationarity inherent to OFDM waveforms to extract an
estimate of the frequency offset. The authors of [14] derived a
kurtosis-based estimator, which generalizes their single input,
single output (SISO) results to multiple input, multiple output
(MIMO) OFDM systems. The other class of OFDM frequency
offset techniques includes semi-blind and non-blind estima-
tors. The common property of all of these techniques, which
relates to the results of this paper, is the reliance on some sort
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of redundancy in the structure of the waveform to compute
the estimates. The work in [15] presented a frequency offset
estimator based on the repetition of two OFDM symbols. The
work in [16] uses a similar principle, keeping the redundant
data within one OFDM symbol and using a second symbol for
fine estimation as well as timing synchronization. The main
idea behind these two techniques is that the cross-correlation
of the repeated time-domain sequence of the receiver would
perfectly reproduce the frequency offset in the absence of
noise. The technique presented by Schmidl and Cox in [16]
exploits the fact that the inverse discrete Fourier transform
(IDFT) of a subcarrier allocation where every other subcarrier
is set to zero produces a time-domain sequence of two
repeated half-symbols. This concept was extended in [17]
and generalized to produce time-domain sequences with more
than two repetitions. The complexity of the Schmidl and Cox
technique was further simplified in [18], reducing the number
of OFDM pilot symbols needed from two to one. Furthermore,
the work in [19]–[21] exploits the inherent redundancy of the
usage of a cyclic prefix in OFDM to estimate the frequency
offset. Finally, the frequency offset compensation problem was
studied specifically for aeronautical channels in [22] and the
references therein. The authors assume a two-ray, dual Doppler
shift model and compensate for each Doppler shift using the
techniques from [19] after separating the signals of the two
incoming paths.

Our contribution to the problem is a technique inspired
by the various OFDM frequency offset estimators which
jointly estimates the bulk Doppler shift and channel taps of
an aeronautical channel. In contrast to the aforementioned
OFDM-based techniques, our algorithm assumes single-carrier
modulation, but could potentially be adapted to support multi-
carrier modulations with a few modifications. More specifi-
cally, although our algorithm requires a certain time-domain
structure combined with time-domain processing of the sound-
ing signals, it places no restriction on the data transmission,
allowing multi-carrier modulations to be used. The main idea
behind our technique is to transmit a cyclically prefixed
training sequence consisting of a repeated shorter training
pulse. The receiver then computes an estimate of the Doppler
shift using a combination of subspace estimation and matched
filtering. After estimating and correcting for the effects of
the Doppler shift, the receiver then computes the conditional
maximum-likelihood (ML) estimate of the channel taps. We
summarize the contributions of this paper as follows.

• We introduce a system model for high-velocity airborne
wireless communication systems exhibiting time disper-
sion due to multipath and frequency dispersion due to a
bulk Doppler shift caused by vehicular motion

• We derive the estimation-theoretic lower bound for esti-
mating the channel taps as well as the Doppler shift of
these channels

• We develop a pulse-repetition based channel estimator for
these parameters

• We show that using constant amplitude, zero autocor-
relation (CAZAC) sequences as pulses in our algorithm
decreases the computational burden of our estimator

• We present numerical studies analyzing the performance
of our estimator

The rest of this paper is structured as follows. Section II
describes the system model considered throughout the paper.
In Section III we derive the Cramer-Rao lower bound (CRLB)
for the joint estimation of the Doppler shift and the channel
taps using the observation model given in Section II. We
present and discuss the joint estimation algorithm in Sec-
tion IV and discuss the special case for CAZAC sequences in
Section IV-D. Simulation results are presented and discussed
in Section V and we provide some concluding remarks in
Section VI.
Notation. We will use the following notation throughout this
manuscript. Bold upper-case and lower-case letters (such as
A and a) denote matrices and column vectors, respectively.
The operators (·)T, (·) and (·)∗ denote matrix transposi-
tion, element-wise complex conjugation and matrix Hermitian
transposition, respectively. ‖·‖2 denotes the vector `2-norm
and ‖·‖F denotes the Frobenius norm of a matrix. CN (a,A)
denotes a complex Gaussian random vector with mean a and
covariance matrix A.

II. SYSTEM MODEL

Our system model consists of a single-antenna transmitter
and receiver pair communicating over a single-input, single-
output (SISO) doubly dispersive wireless communication
channel. Under these assumptions, the general discrete-time
complex baseband input-output model between the transmitter
and the receiver can be written as

y[k] =
√
ρ

L−1∑
`=0

hk[`]s[k − `] + n[k], (1)

where we denote hk[`], ` ∈ {0, . . . , L − 1} as the `-
th complex channel filter tap at time index k. Furthermore,
s[k], k ∈ {0, . . . , Ls − 1} denotes the k-th sample of an
arbitrary data or sounding sequence of length Ls, n[k] ∼
CN (0, σ2

k) is a sample of an additive Gaussian noise process,
and ρ is a transmit signal-to-noise ratio (SNR) term.

Our channel model assumes an airborne platform where
the Doppler shift is approximated as being of the same
magnitude on each multipath component of hk[`]. In general,
the expression for a channel tap hk[`] can be written as [3]

hk[`] =
1√
Np

Np∑
n=1

ejθnej2πfdnkTsgtotal(`Ts − τn), (2)

where Np denotes the number of paths, θn and τn denote
the phase shift and time delay of path n, gtotal denotes
the convolution of the transmitter and receiver pulse shap-
ing filters, Ts denotes the sampling period of the system,
and fdn represents the Doppler shift on the n-th path from
transmitter to receiver. As mentioned in Section I, we make
the assumption that the Doppler shift is equal across all paths,
i.e., fd1 = fd2 = · · · = fdNp

= fd. This is a reasonable
assumption when considering a ring of scatterers close to the
transmitter traveling at the same velocity as the transmitter,
for example the surface of an airplane. In this case, if we
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let v denote the relative velocity between the transmitter and
receiver, we can define the Doppler shift as fd = fcv/c,
fc being the carrier frequency of the communication system.
Figure 1 illustrates two possible scenarios of our system
model. In either case (air-to-air or air-to-ground), the Doppler
shift creating a frequency offset at the receiver is due to
non-zero relative velocities between the transmitter and the
receiver. To further illustrate the near-equal Doppler shift
assumption, consider the case of scattering off the airframe. In
this case, the Doppler spread, i.e., the variance of the Doppler
shifts on the different paths, will be most significantly affected
by the roll, pitch, and yaw rates of the aircraft. Suppose for
example scattering off the engines of a commercial two-engine
airliner. The yaw rate for a “dutch roll” maneuver is 2.2
rad/second [23], resulting in a maximum Doppler frequency
of fc

c · 12.4 meters per second for an engine offset by 6
meters from the fuselage. However, realistic cruising speeds
for commercial jet airliners are around 250 meters per second,
resulting in a bulk Doppler shift about 20 times larger than the
Doppler spread due to maneuvering. Similar arguments can be
made for scattering off the ground in the air-to-ground case.
Here, the ratio of the Doppler spread due to the scatterers
and the Bulk Doppler shift is bounded by the ratio of the
diameter of the ring of scatterers and the distance from the
transmitter to the receiver. Scatterer ring diameters in the
single-kilometer range and standoff distances on the order
of tens of kilometers (expected standoff ranges for tactical
distributed beamforming applications, for example [24]) give
bulk/scatterer ratios comparable to the aforementioned air-to-
air setting. Considering, for example, a distance of 50 km and
a scatterer ring diameter of 1 km, the bulk Doppler shift is
approximately 50 times larger than the shifts due to scattering.

To simplify notation, we denote the sampled baseband
frequency offset as α = 2πTsfd. We can thus rewrite (2)
as

hk[`] = ejαk
Np∑
n=1

1√
Np

ejθngtotal(`Ts − τn), (3)

where, if the number of paths Np grows large, we can
approximate the summation term as a circularly symmetric
complex Gaussian random variable [11]. We can thus write
the time-varying channel impulse response as

hk[`] = ejαkh[`], (4)

where h[`] can be approximated as CN (0, 1). Our doubly
dispersive channel model thus consists of two separate com-
ponents. We model the frequency dispersive part due to the
Doppler shift with the complex exponential ejαk. We model
the time dispersive part as a purely feed-forward tapped delay
line with L taps. For the remainder of this manuscript, we
will refer to these taps as finite impulse response (FIR) taps
of the channel and denote them as h[`], ` ∈ {0, . . . , L− 1}.
Substituting (4) in (1) yields the input-output relationship that
is considered in this paper:

y[k] = ejαk
√
ρ

L−1∑
`=0

h[`]s[k − `] + n[k]. (5)

Fig. 1: An aircraft wishes to estimate the channel taps h of
an air-to-ground or air-to-air channel with a single dominant
Doppler component.

In our model, the receiver wishes to estimate a vector
consisting of the L FIR taps of the channel impulse response
h[`] using the received samples of a known training sequence
s[k]. We assume the that the training sequence s[k] con-
tains Ls samples. The received signal y[k] thus consists of
N = Ls + L − 1 samples after the convolution with the
channel impulse response. Using matrix-vector notation, and
after defining the vectors s = [s[0], · · · , s[Ls − 1]]

T, h =
[h[0], · · · , h[L− 1]]

T, and y = [y[0], · · · , y[N − 1]]
T, as

the training sequence, received samples, and channel impulse
response vectors, respectively, the vector of received samples
y can be written as

y =
√
ρVαSh + n, (6)

where Vα = diag
([
1 ejα · · · ejα(N−1)

])
represents the

Doppler shift matrix, n ∼ CN (0,C) is a vector of com-
plex Gaussian noise samples with covariance matrix C, and
S ∈ CN×L is the Toeplitz matrix obtained by linearly shifting
the samples of the training sequence s for each column.

The estimation problem that the receiver is seeking to
solve is a joint Doppler/channel estimation problem, since
the Doppler shift α is unknown. More specifically, using our
proposed technique, the receiver will use its estimate of α to
correct for the effects of the Doppler shift matrix Vα when
obtaining an estimate of the vector of FIR taps h. In the next
section, we derive theoretical bounds on the variance of the
estimators for the Doppler shift α and the channel taps h in
this joint estimation framework.

III. CRAMER-RAO LOWER BOUND

The derivation of the Cramer-Rao lower bounds for the joint
estimator of the Doppler shift and the channel taps follows.
The receiver wishes to estimate the parameter vector

θ =
[
α hT

]T
(7)
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from the observation given in (6). In order to derive the CRLB
for any estimator θ̂, we construct the Fisher information matrix
I(θ), where its elements are defined as [25]

Ik,` (θ) =
[
∂µ(θ)

∂θk

]∗
C−1

[
∂µ(θ)

∂θ`

]
(8)

and µ(θ) denotes the expectation of θ. A lower bound on the
variance of the i-th element of θ is then given by

var(θ̂i) ≥
[
I−1(θ)

]
ii
. (9)

Lemma 1. For θ as defined in (7) and the observation model
given in (6), the Fisher information matrix is given by

I(θ) =

ρ

[
−h∗S∗V∗αA∗C−1AVαSh −jh∗S∗V∗αA∗C−1VαS

jS∗V∗αC−1AVαSh S∗V∗αC−1VαS

]
(10)

where A = diag ([0 · · · N − 1]).

Proof: By inspection of (6), we have µ(θ) =
√
ρVαSh.

It can then be shown that

∂µ(θ)

∂θ1
=
√
ρ
∂Vα

∂α
Sh = j

√
ρAVαSh, (11)

where A = diag ([0 · · · N − 1]). It can further be shown that

∂µ(θ)

∂θ2
=
√
ρVαS. (12)

After application of (8), we arrive at (10).

Theorem 1. The Cramer-Rao Lower Bound for any estimate
of the Doppler frequency α, denoted by α̂, is given by

var(α̂) ≥ (1/ρ)·(
h∗S∗V∗αA∗C−1AVαSh

+h∗S∗V∗αA∗C−1VαS
(
S∗V∗αC−1VαS

)−1 ·
S∗V∗αC−1AVαSh

)−1
. (13)

Furthermore, the Cramer-Rao Lower Bound for any estimate
of the channel h, denoted by ĥ, is given by

cov(ĥ) ≥ (1/ρ)·(
S∗V∗αC−1VαS

+S∗V∗αC−1AVαSh·(
h∗S∗V∗αA∗C−1AVαSh

)−1 ·
h∗S∗V∗αA∗C−1VαS

)−1
, (14)

where A ≥ B for two compatible matrices A and B means
A−B is a positive semi-definite matrix, or, equivalently, the
product x∗ (A−B)x ≥ 0 for all x ∈ Cn.

Proof: We invert (10) using the Schur complement for-
mula [26] and apply (9) to arrive at (13) and (14).

We note that (13) and (14) hold for arbitrary noise covari-
ance matrices C. In the case of white noise, the expressions for
the CRLB simplify significantly, a fact shown in Corollary 1.

Corollary 1. If the additive noise in (6) is i.i.d. Gaussian dis-
tributed, i.e., n ∼ CN (0, I), the Cramer-Rao Lower Bounds
are given by

var(α̂) ≥
1

ρ

(
h∗S∗A∗ASh + h∗S∗A∗S(S∗S)−1S∗ASh

)−1
(15)

and

cov(ĥ) ≥
1

ρ

(
S∗S + S∗ASh(h∗S∗A∗ASh)−1h∗S∗A∗S

)−1
.(16)

The expressions for the CRLB for both the Doppler and
the channel estimates are crucial tools for analyzing the per-
formance of our proposed algorithms. The simulation results
in Section V will verify that our proposed techniques fall
within a desirably small margin to the theoretical bounds on
the estimator performance.

IV. ESTIMATION PROCEDURE

This section provides a detailed description of our proposed
block-based estimation algorithm. Subsection IV-A covers the
details of the block structure of the training signal, which is
required in Subsection IV-B to extract information about the
Doppler shift at the receiver. The Doppler information is then
used in Subsection IV-C to compute an estimate of the channel
coefficients. We close this section by providing an overview
of the estimation steps in Algorithm 2.

A. Block-based processing

Our proposed algorithm demands that the training sequence
consists of M repetitions of an arbitrary training pulse x and
a cyclic prefix xCP . Specifically, in the notation of Section II,
the training sequence is structured as

s =
[

xT
CP︸︷︷︸

cyclic prefix

xT xT · · · xT︸ ︷︷ ︸
M training pulses

]T
, (17)

where the cyclic prefix samples
xCP = [x[K − L+ 1] · · · x[K − 1]]

T ∈ CL−1×1 consist
of a block of L − 1 data symbols rotated cyclically [11]. In
order to mitigate the effects of inter-symbol interference (ISI)
induced by the time dispersion due to the L channel taps of
h, the receiver processes only the samples in the time interval
k ∈ [L,KM + L− 1] and discards the rest. This results
in a modified input/output model, which can be expressed
in terms of the cyclic convolution of concatenation of M
training pulses and the channel vector h [11]. In addition to
the cyclic prefix removal operation, the receiver also reorders
the M segments of the received signal corresponding to the
M transmitted training pulses into columns of a matrix of
received samples denoted as Y ∈ CK×M . The process of
cyclic prefix removal and sample reordering is visualized in
Figure 2. The goal of this block processing at the receiver
is to write an expression for the individual columns of Y in
terms of the cyclic convolution of one sequence pulse x with
the channel vector h, which is given as

y` =
√
ρ Ṽ`X̃h + n`, ` ∈ 0, . . . , M − 1. (18)
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yT = yT
CP,a yT

0 yT
1 · · · yT

M−1
yT
CP,b

⇓

Y = y0 y1 · · · yM−1

Fig. 2: The receiver drops the cyclic prefix components (red),
extracts M receive pulses (green, K samples each), and re-
orders them into the matrix of received pulses Y.

Here, the additive noise vector n` is drawn from the complex
Gaussian distribution with zero mean and covariance matrix
C̃, which is a truncated version of C from 6. The diagonal
matrix Ṽ` ∈ CK×K accounts for the Doppler shift of the `-th
block and is given by

Ṽ` = ej`Kαdiag
([
ej(L−1)α ejLα · · · ej(K+L−2)α

])
.(19)

Furthermore, X̃ ∈ CK×L is the cyclic convolution matrix
obtained from the training pulse x, truncated to its first L
columns. The K×K cyclic convolution matrix obtained from
a vector x ∈ CK×1 is given by the matrix of cyclic shifts of
x and is defined as

X =



x[0] x[K − 1] · · · x[1]
x[1] x[0] · · · x[2]

x[2] x[1] · · · ...
... x[2] · · · x[K − 2]

x[K − 2] ...
... x[K − 1]

x[K − 1] x[K − 2] · · · x[0]


. (20)

Upon further inspection of (19), we note that the effects of
the Doppler shift α can be separated into the Doppler shift
internal to each block and the frequency offset between the
blocks. Specifically, if we let Ṽ0 represent the Doppler shift
on each block (Ṽ` from (19) with ` = 0) and define the inter-
block Doppler offset vector d∗ as

d∗ =
[
1 ejKα · · · ej(M−1)Kα

]
, (21)

we can write the expression for Y as

Y =
√
ρ Ṽ0X̃hd∗ + N, (22)

where X̃ is defined as above and N = [n0 · · · nM−1] is
the matrix of additive noise vectors. Writing the input/output
model like (22) is a desirable step, since it lets us break the
estimation algorithm into two distinct parts: The first step
computes an estimate of the Doppler frequency, denoted α̂,
which is then used to cancel out the effects of d∗ and Ṽ0,
effectively turning the estimation of the channel coefficients
into a straightforward linear Gaussian estimation problem.

B. Doppler Estimation

This estimation step directly exploits the block structure of
the training sequence. We observe that at high SNRs, i.e., for
large ρ, the received signal matrix Y can be approximated
as the rank-1 outer product of the vectors

√
ρ Ṽ0X̃h and d∗.

It is a well known fact that the singular value decomposition
(SVD) can be used to construct low-rank approximations to
matrices of any dimension [27]. In order to extract an estimate
of d∗ from (22), we can therefore use the SVD of Y, defined
as

Y = UΣV∗

=

u1 · · · uK


σ1

. . .
σK


v1 · · · vM

∗ .(23)

If Y were truly rank one, we would have σ2 = σ3 . . . =
σK = 0 and could therefore write the SVD as the outer product
Y = σ1u1v

∗
1 . Comparing with the model given in (22), it

becomes clear that in high SNRs, d∗ must be some scaled
version of the vector v∗1 , which is often referred to as the
dominant right singular vector. This observation is the key to
the Doppler estimation step, and we define the estimate of the
Doppler offset vector, denoted as d̂, as

d̂ =
√
Mv1, (24)

where the scale factor
√
M compensates for the fact that v1 is

usually obtained with unit norm. The simulation results from
Section V will show that this estimator provides acceptable
results even in low-SNR regimes, where Y is unlikely to be
of rank one due to noise.

Since the estimator for d only requires the dominant right
singular vector of Y, computing the full SVD of Y can be
a waste of computational resources. Fortunately, there exist
well-known iterative algorithms in numerical linear algebra
to compute the dominant eigenvectors and singular vectors
directly, with the simplest one being the power method [28].
The power method belongs to a larger class of general
eigenvalue or “power” iterations, which have been applied
to problems in the space of multiple-input, multiple-output
(MIMO) communication systems in recent works [29,30].
The basic idea behind the power method is that the repeated
multiplication of a randomly selected vector x with a matrix
A converges to a scalar multiple of the dominant eigenvector
of A. Normalization between the iterations of the power
method produces the unit norm dominant eigenvector of A.
The algorithm is defined as

Algorithm 1 Power Method

Input: A diagonalizable matrix A ∈ Cn×n
Let q0 be a randomly chosen unit vector ∈ Cn
for k = 1, 2, . . . do

z(k) = Aq(k−1)

q(k) = z(k)/‖z(k)‖2
end for
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In Lemma 2, we briefly show the convergence of q(k) to
the dominant eigenvector of A.

Lemma 2. The power method given in Algorithm 1 converges
to a scalar multiple of the dominant eigenvector of A.

Proof: Without loss of generality, we suppose that the
eigenvalues of A are ordered as

|λ1| > |λ2| ≥ |λ3| · · · ≥ |λn|, (25)

where we denote λ1 as the dominant eigenvalue and the
corresponding eigenvector x1 as the dominant eigenvector.
Then, since A is diagonalizable, we can write q0 as linear
combination of the eigenvectors of A, i.e.,

q0 =

n∑
i=1

qixi. (26)

We can thus write Akq(0) as

Akq(0) = q1λ
k
1

(
x1 +

n∑
i=2

qi
q1

(
λi
λ1

)k
xi

)
(27)

It is straightforward to show that q(k) is a scalar multiple
of Akq(0). Furthermore, since the ratio (λi/λ1)

k approaches
zero for all i 6= 1, all components of q(k) corresponding to
eigenvectors other than x1 vanish as k →∞.

Since the set of right singular vectors of Y is equal to the
set of eigenvectors of Y∗Y, we can use the power method to
compute the dominant right singular vector v1, from which
the estimator d̂ can be obtained. Note that due to the block
structure of Y we can safely assume that (25) holds for
moderate to high SNRs, since the signal component of Y is
rank 1 and all higher-rank components are due to additive
noise. In practice, this means that a sufficiently accurate
estimate of the dominant right singular vector can be obtained
with a moderate number of iterations.

Recall that in order to mitigate the effects of the Doppler
shift in the model from (22), the receiver must ideally cancel
both the block-based Doppler offset due to d∗ as well as the
intra-block Doppler shift due to Ṽ0. With perfect knowledge
of α, the receiver could simply construct the inverse of Ṽ0 for
this. However, since α is not known, the receiver has to extract
an estimate of it from the previously computed estimate of the
Doppler offset vector d∗. This estimate can be constructed
using a simple correlation operation, and is given by

α̂ = arg max
β∈R+

∣∣∣∣∣
M∑
`=1

ej(`−1)Kβ d̂`

∣∣∣∣∣ , (28)

where d̂` is the `-th element of d̂. To minimize computational
cost, the receiver could have a precomputed set of vectors to
correlate against stored, resulting in a single matrix multipli-
cation per estimation.

C. Channel estimation

To arrive at the expression for the estimates of the L channel
taps, we observe that with perfect knowledge of α, the channel
estimation problem would reduce to the well known linear

Gaussian estimation problem, for which we could write the
estimator as [25]

ĥα =
1

M
√
ρ

(
X̃∗Ṽ∗0C̃−1Ṽ0X̃

)−1

X̃∗Ṽ∗0C̃−1Yd. (29)

Since in our system setup the Doppler shift α is unknown,
the receiver has to resort to using the estimates of Ṽ0 and d,
which are obtained as described in the previous subsection.
More specifically, the receiver computes the estimate as

ĥ =
1

M
√
ρ

(
X̃∗V̂∗0C̃−1V̂0X̃

)−1

X̃∗V̂∗0C̃−1Yd̂, (30)

where d̂ was derived in the previous section and V̂0 is
constructed using the Doppler shift estimate α̂ as

V̂0 = diag
([
ej(L−1)α̂ ejLα̂ · · · ej(K+L−2)α̂

])
. (31)

To conclude our discussion on the specifics of our proposed
estimation algorithm, the steps outlined in 2 provides a short
summary of the necessary steps at the receiver with our
proposed technique.

Algorithm 2 Doubly dispersive channel estimation (Summary)

Input: Received estimation sequence y . (6)
1. Drop cyclic prefix and reshape . (22), Fig. 2
2. Estimate Doppler shift vector d . (24), Alg. 1
3. Estimate Doppler frequency using correlation . (28)
4. Compute channel estimate ĥ . (30)

D. Simplified channel estimation using CAZAC sequences

Until now, the discussion of our channel estimation algo-
rithm has remained independent of the choice of base sequence
for our training pulses, denoted earlier as x. While there
are many potential choices of pseudo-random (PN) training
sequences, we have exclusively considered the class of Zadoff-
Chu sequences [31] in this work. Zadoff-Chu sequences be-
long to the class of constant-amplitude, zero autocorrelation
(CAZAC) waveforms and have most recently found use in
various applications in the LTE physical layer [32]. The k-th
symbol of a Zadoff-Chu sequence of length K is given by

xk =

{
e−jπuk(k+2q)/K if K is even
e−jπuk(k+1+2q)/K if K is odd,

(32)

where the parameter q is any positive integer or zero and the
parameter u is some positive integer relatively prime to K. For
the remainder of this text, we used the values q = 0 and u = 1.
Zadoff-Chu sequences have various beneficial properties, the
most interesting for this application being the fact that cyclic
shifts of the same sequence are orthogonal. Recall that our
estimator, given in (30), utilizes the circular convolution matrix
obtained from a training pulse, denoted as X̃. If the training
pulse x is a Zadoff-Chu sequence, it can be shown that the
circular convolution matrix X̃ satisfies

X̃∗X̃ = X̃X̃∗ = KI, (33)
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which greatly simplifies the computation of (30), since it is
easily shown that under white noise this expression simplifies
to

ĥ =
1

M
√
ρ
X̃∗V̂∗0Yd̂. (34)

The switch from (30) to (34) obviates the need to compute
expensive high-dimensional matrix inverses on-the-fly in the
white noise regime, resulting in a substantially decreased
computational load. Given these favorable properties, the
remainder of this paper will assume that every training pulse is
a Zadoff-Chu sequence of appropriate length. An added benefit
to using Zadoff-Chu sequences in practical systems are their
constant-cross-correlation properties [31], which are leveraged
in the LTE physical random access channel (PRACH) to
resolve collisions using initial access. In multi-user systems
employing our proposed estimation technique, different users
could be assigned different root parameters u and q to mini-
mize conflicts during channel estimation.

V. NUMERICAL STUDIES

In this section, we evaluate the performance of our pro-
posed algorithm using Monte-Carlo methods and synthetic
data. Our quantities of interest for all simulations are the
sample mean squared error of the channel estimates ĥ and
the sample error variance of the Doppler frequency estimate
α̂. In all results of this section, the L channel taps were
drawn independently from a complex Gaussian distribution,
i.e., h[`] ∼ N (0, I), ` ∈ 0, . . . , L − 1. In all simulations,
the length of the cyclic prefix was held constant at L − 1
symbols, the minimum required length to write the input-
output model using circular convolution. Furthermore, for each
Monte-Carlo iteration a channel realization, noise realization,
and a initial seed vector for the power method iteration was
generated independently.

A. Comparison to theoretical optimum

Figures 3 and 4 study the performance of our proposed
estimator in relation to the theoretical optimum derived in
Section III. Specifically, in Fig. 3 we examine the difference
between the sample mean squared error of the channel estimate
and the CRLB given in (14) for signal-to-noise ratios ranging
from -10 dB to 20 dB. Correspondingly, Fig. 4 examines the
difference between the sample variance of the estimation error
of α̂ and the CRLB given in (13) for the same range of SNRs.
We compare these performance metrics in both figures for
three different cases.

1) White Noise. The curves labeled “White Noise” present
results for uncorrelated white complex Gaussian Noise,
i.e., C = I. As noted earlier, the training pulses consist
of Zadoff-Chu sequences, with the sequence length
K fixed to 127. The equation used for the channel
estimation step is thus (34).

2) Correlated Noise. The curves labeled “Correlated
Noise” examine the performance of our estimator for

correlated noise environments. To simulate such an en-
vironment, we constructed a synthetic noise correlation
matrix

C =



1 β β2 · · · βN

β 1 β · · · βN−1

β2 β 1 · · · βN−2

...
...

...
. . .

...
βN βN−1 βN−2 · · · 1


,(35)

where the specific correlation parameter β used for
producing the curves in Figs. 3 and 4 was β = 0.8.
Due to the structure of C, the channel estimation step
uses (30), including the costly matrix inverses.

3) Grid Search. We provide an alternative channel and
Doppler estimation algorithm as a point of reference
for our proposed algorithms. This estimator, denoted
as “Grid Search” in Figures 3 and 4, computes an
approximate maximum-likelihood estimate of the chan-
nel taps and the frequency offset α by performing the
minimization

α̂ = argmin
β∈G

‖y − yβ‖2 , (36)

ĥ = ĥα̂, (37)

where

yβ =
√
ρVβShβ (38)

ĥβ =
1√
ρ

(
S∗V∗βC−1VβS

)−1
S∗V∗βC−1y (39)

over a pre-defined set of grid points G for the ob-
servation vector y (6). We note that in (36), Vβ =
diag

([
1 ejβ · · · ejβ(N−1)

])
. In order to obtain a fair

comparison, the set of grid points is chosen to be equiva-
lent to the set of points over which our proposed estima-
tors perform the Doppler correlation step (28), rendering
this search prohibitively expensive from a computational
perspective. However, this estimator helps to provide
a good baseline for the performance of our proposed
algorithms due to its near-optimal performance.

We show the error curves in Figures 3 and 4 for three dif-
ferent values of the Doppler frequency, each presented using a
different line style. More specifically, the mapping is described
in Table I. Although our studies suggest that the impact of the
specific Doppler frequency on the estimation error is minimal,
these three values were chosen to provide examples of realistic
conditions and reasonable values for reference. For example,
the aforementioned cruising speed of 250 m/s combined with a
transmission at the center frequency fc = 120 MHz (reserved
for aeronautical mobile radio according to [33]) results in a
bulk Doppler shift of approximately 100 Hz. The values of
50 Hz and 0 Hz were studied to provide additional points for
reference. In all of these studies, one training sequence pulse
consisted of a Zadoff-Chu sequence of length K = 127, while
the entire training sequence consisted of M = 5 pulses with
a cyclic prefix. At each iteration, L = 16 channel taps were
generated.
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−10 −5 0 5 10 15 20

SNR [dB]

0.5

1.0

1.5

2.0

M
S
E

di
ff

.[
dB

]

Grid search
White Noise
Corr. Noise

Fig. 3: Difference between sample MSE of the channel
estimate ĥ and the CRLB (14) vs. SNR of our proposed
estimator for white noise and colored noise environments.
Grid search based estimator pictured for reference. K = 127
samples, M = 5 pulses, L = 16 channel taps.

fd Style
0 Hz dotted
50 Hz dashed
100 Hz solid

TABLE I: Doppler shift to line style mapping for Figs. 3– 6

The results in Figure 3 and 4 indicate that our proposed
algorithm produces desirable results largely independent of the
magnitude of the Doppler shift present, especially for medium
to high SNRs. Note that due to the loss of information from
performing cyclic prefix removal at the receiver, our proposed
estimator never fully attains the CRLB, even for high SNRs.
Our algorithm performs especially well for the white noise
scenario, quickly approaching a sub-1 dB difference from the
theoretical optimum and a difference to the computationally
expensive minimum-distance grid search estimator of less
than 0.5 dB. The constant gap for the colored noise case is
explained by the fact that the estimator from (30) disregards
any correlation across blocks that could be present in the noise
samples.

The contrast between Figure 3 and Figure 5 illustrates
the importance of the intra-block Doppler correction for this
algorithm. To generate the results in Figure 5, we disabled
the intra-block Doppler correction from (28), resulting in
V̂0 = I at all iterations. The severe performance penalty of
only correcting for the per-block Doppler shifts is evident in
the increasing loss in estimator performance as a function of
increasing SNR. We note that as expected, this performance
loss does not occur for the 0 Hz case.

B. Performance under model mismatch

Figure 6 studies the loss in performance of our proposed
estimator when the bulk Doppler assumption introduced in
Section II does not apply and the Doppler shift varies across

−10 −5 0 5 10 15 20

SNR [dB]

6

8

10

12

14

16

σ
2 e

di
ff

.[
dB

]

Grid search
White Noise
Corr. Noise

Fig. 4: Difference between sample error variance of the
frequency offset estimate α̂ and the CRLB (13) vs. SNR of
our proposed estimator for white noise and colored noise envi-
ronments. Grid search based estimator pictured for reference.
K = 127 samples, M = 5 pulses, L = 16 channel taps.

the multipath components of the channel. In this case, the
channel model from (4) becomes

hk[`] = ejα[`]kh[`], (40)

where α[`] = 2πTsfd[`] and fd[`] is sampled from a probabil-
ity distribution for each channel tap. We furthermore restrict
ourselves to the white noise case for this study and re-use the
parameters K = 127, L = 16, and M = 5 from the previous
subsection.

Figure 6 plots these trials for normally distributed
fd[`] ∼ N (fd, σ

2
f ) for the three different mean values

fd given in Table I as a function of the standard deviation
σf . Each curve is obtained by using our proposed algorithms
(designed for the bulk Doppler-only model) on the channel

−10 −5 0 5 10 15 20 25 30

SNR [dB]

0
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10

15

20

25

30

M
S
E
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ff
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dB

]

No intra-block correction
(White noise)

Fig. 5: Difference between sample MSE of the channel
estimate ĥ and the CRLB (14) vs. SNR of our proposed esti-
mator for white noise without intra-block Doppler correction
from (28). K = 127 samples, M = 5 pulses, L = 16 channel
taps.
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Fig. 6: Increase in mean squared error relative to the bulk-only
Doppler shift model when using our proposed estimator on
the mismatched random Doppler shift model form (40). “MSE
Loss” denotes the difference in mean square error performance
between the matched and mismatched scenario. K = 127
samples, M = 5 pulses, L = 16 channel taps. Pictured for
various SNR regimes.

model from (40). The plot shows the difference in mean
squared error between this mismatched scenario (Estimator
assumes equal Doppler, but channel model generates random
Doppler per multipath component) and the matched scenario
from in Fig. 3 (Estimator assumes equal Doppler and channel
model generates equal Doppler per multipath component) for
a range of SNR regimes. As expected, the performance of our
estimator degrades with increasing standard deviation of the
Doppler frequency. The simulation furthermore indicates that
the performance in high-SNR regimes is limited by the model
mismatch, whereas it is limited by the noise power in the
low to medium SNR regime. This implies that our estimators
remain attractive options in the low-to medium SNR regime,
especially in the 0-10 dB range. We note that the choice of
normally distributed Doppler shifts is applicable especially
in the air-to-ground scenario with automobiles as scatterers
due to the widely accepted assumption of normally distributed
velocities [34]–[37].

C. Pulse length and repetition count

The plot in Figure 7a) shows the channel estimation MSE
as the length of a training pulse K increases. The results
were obtained assuming white noise, i.e., β = 0, M = 5
training pulse repetitions, L = 16 channel taps, and transmit
powers ranging from -10 dB to 30 dB. The training sequence
pulses were again chosen to be Zadoff-Chu sequences with the
length of one pulse varying from K = 29 to K = 331. For
these simulations, the Doppler shift was fixed to fd = 50
Hz. As we can see, performance gains can be achieved
when increasing the pulse length, but the magnitude of the
performance gains decreases with the length. Figure 7b) gives
a similar comparison, however, whereas the number of pulses
M was fixed in Figure 7a), we now fix the length of one

50 100 150 200 250 300

a) Training pulse length K

−40

−30

−20

M
S
E

[d
B

]

SNR
10.0 dB 15.0 dB 20.0 dB

5 10 15 20

b) Number of training pulses M

−40

−30

M
S
E

[d
B

]
Fig. 7: Impact of sounding signal length factors on MSE for
different SNRs.
a) Sample mean squared error vs. training pulse length K for
fixed pulse repetition M = 5. White noise and L = 16 channel
taps.
b) Sample mean squared error vs. pulse repetition M for fixed
training pulse length K. White noise and L = 16 channel taps.

training pulse to K = 127 symbols and vary the number of
pulses M between M = 2 and M = 20. In this case, the MSE
behaves similar as it does with increasing pulse length.

VI. CONCLUDING REMARKS

This paper studied the problem of jointly estimating the bulk
Doppler shift and the channel taps of a doubly dispersive aerial
channel. Work in this area is of importance and significance
because channel estimation is an essential part of any modern
wireless communication system, including aeronautical sys-
tems. This paper and other current and future work focusing
on aeronautical wireless communication systems is in line
with the recent surge in popularity of airborne platforms in
consumer electronics, public safety networks, and defense
applications. Our contribution to the field concerns a special
class of channels in which the Doppler spread is dominated
by the bulk Doppler shift due to vehicular motion. For this
class of channels, we presented a simple channel model
incorporating time and frequency dispersion before deriving
the theoretical bounds of the resulting channel estimation
problem. In addition to the theoretical analysis, we developed a
novel channel estimation algorithm by combining traditional
pulse-repetition techniques with simple and computationally
efficient processing techniques. Our numerical studies indicate
that our proposed techniques perform comparatively well to
computationally expensive brute-force search methods.
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The main contribution of this paper lies in our combination
of prior work in estimation theory and signal processing into
an efficient algorithm for our model. However, aerial channels
like the one considered in this paper are still sources of many
open problems. More specifically, future work in this area
includes the extension of our model to multi-antenna systems
and multi-user scenarios.
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