BAM! Radio: A flexible software-defined radio platform for rapid prototyping of multi-hop wireless ad-hoc networks

Presenter*: Dennis Ogbe, School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana, USA

Wireless networks as fertile ground for research

Emerging networking technologies differ substantially from the current state of the art (LTE, Wi-Fi)

Internet of things: Low power, low throughput, massive random access

Vehicular networks: (autonomous) V2V/V2X, airbone Advanced control & specvehicles, high mobility, rapid trum sharing mechanisms, change in nodes

Machine-type comms.: Industrial applications, high reliability, low latency

Collaborative networks: AI-enabled

- Variety of use cases, topologies, semantics, and control mechanisms
- Lots of unanswered questions, ranging from fundamental limits to protocol design

experimental Increased toward pusn verification

- DoD (see DARPA's Colosseum) and NSF (see PAWR initiative) encourage prototyping and experimentation on SDR (software-defined radio) based testbeds
- Prototype implementation as first step toward commercialization
- Testbeds ranging from city-scale wireless to fully emulated
- Massive investments by both government & industry

Image source: https://www.spectrumcollaborationchallenge.com/about

***Joint work by:** Dennis Ogbe[†], Tomohiro Arakawa[†], Stephen G. Larew[†], Mai Zhang[†], Andrew C. Marcum[‡], David J. Love[†], James V. Krogmeier † , Aly El Gamal † , Borja Peleato † , Nicolo Michelusi † , Chih-Chun Wang † , Alex Sprintson § [†]Purdue University, [‡]Raytheon BBN Technologies, [§]Texas A&M University

SDR as a solid foundation

SDRs like the Ettus USRP paired with libraries like GNU Radio provide a solid foundation for the implementation of prototype networks

Problem: Focus either on a) ready-made applications for existing protocols (LTE, 802.11, ZigBee, etc.) or b) physical layer signal processing primitives (filtering, mixing, etc.)

Need simple, extensible, multi-layer (PHY/DLL/NET) baseline radio network implementation to enable prototyping, experimentation, and research

The BAM! Radio platform

- Developed as part of our entry into DARPA's Spectrum Collaboration Challenge
- IP-based packet radio stack (PHY/DLL/NET) + control mechanisms for ad-hoc networking
- Multiple physical layer implementations (currently: SC-FDMA for bulk data, 8-FSK for control links)
- Implemented in C++, extensible via Common Lisp (planned: Lua)
- Targets Ettus USRP x310, offloads some signal processing to NVIDIA GPUs
- Key: Designed to be extensible & hackable

https://www.ettus.com/all-products/x310-kit/, https://wiki.gnuradio.org/index.php/Main_Page

Example use case: DARPA Spectrum Collaboration Challenge

- DARPA's Grand Challenge to solve the "spectrum" crunch" problem
- Goal: Channel recent advances in machine learning and artificial intelligence for spectrum management
- ► 3 years, 30+ teams, 13 finalists, 10 teams on stage at MWC LA 2019
- ► BAM! Wireless + BAM! Radio: Funded team for 3 years, phase 3 finalist, > \$1.5M prize money
- Competition set-up: Submit code for one radio node, multiple instances are run as networks in "Colosseum"–A 128x128 MIMO channel emulator
- Different scenarios model real-world use cases (radar incumbent, disaster relief, etc.)

• Collaboration: Match score \propto min Score_n (N = number of networks in scenario)Side channel between special nodes of each network

- Challenge: Protocol design, trusting external information, control/AI algorithms (currently done by Council of teams + DARPA)
- Many interesting questions postresearch competition Image source:

https://www.spectrumcollaborationchallenge.com/media

Selected Publications:

[1] C.-C. Wang, D. J. Love, and D. Ogbe, "Transcoding: A new strategy for relay channels," Allerton 2017, Oct. 2017. [2] D. Ogbe, C.-C. Wang, and D. J. Love, "On the Optimal Delay Amplification Factor of Multi-Hop Relay Channels," ISIT 2019, July 2019.

Example use case: Low-latency multihop backhauling experiments

- bottlen

The theoretical model of the separated multi-hop relay channel is central to many practical communication systems

Example: Small cells in 5G mmWave networks: Need wireless relays to obtain density required for mmWave

Information-theoretic capacity analysis is clear (min-cut: $C = \min(\{C_l\}_{l=1}^L)$)

For low-latency settings, the delay-throughput tradeoff is not well understood

Our work in [1] presented a simple coding scheme to improve on state-of-the-art (decode-&-forward) for short block lengths

► In [2] we propose a general analysis framework + more coding schemes for long block lengths

end-to-end delay $T_{e2e}(R,\epsilon)$

$\overrightarrow{C_1} (r_1) \overrightarrow{C_{l^*}} (r_2)$) $\rightarrow \cdots \rightarrow \stackrel{r_{L-1}}{\underset{C_L}{\longrightarrow}} \stackrel{r_{L-1}}{\underset{S}{\longrightarrow}} $
neck delay $T_{bn}(R,\epsilon)$	$\text{DAF}_{\Phi} \triangleq \lim_{R \nearrow C} \lim_{\epsilon \to 0} \frac{T_{e2e}(R, \epsilon)}{T_{bn}(R, \epsilon)}$

• State of the art: $DAF_{DF} \approx \mathcal{O}(L)$

Surprising results:

(a) $DAF_{TC} = 1$ if $l^* = L$ (bottleneck is last) (b) $DAF_{TC} = 1$ for any l^* if feedback is allowed

Future work: Use BAM! Radio to run real-world experiments based on this theory

Joint Work by D. Ogbe, C.-C. Wang, and D. J. Love