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Abstract—The abstract model of the multi-hop relay channel is
fundamental to a vast variety of modern communication systems.
This fact, coupled with the demand for ultra-reliable-low-latency
communication (URLLC), motivates a new investigation of relay
channels from a delay-vs-throughput perspective. This work
seeks to analyze this tradeoff in the regime of asymptotically
large, yet still finite delay. A new metric called the Delay
Amplification Factor (DAF) is introduced, which allows analytic
comparison of the asymptotic delay across different relay so-
lutions, e.g. decode-&-forward (DF), compress-&-forward, etc.
The optimal DAF (over all possible existing/future designs) is
then characterized for two special settings, one with fixed-
length coding and one with variable-length coding and 1-bit stop
feedback. The results show that under some general conditions,
the optimal end-to-end delay over an L-hop line network is
asymptotically comparable to the delay over the single bottleneck
hop, and it does not grow linearly with respect to L. The linearly
growing delay penalty commonly encountered in DF and other
schemes is thus an artifact rather than a fundamental limit of
multi-hop relay communication.

I. INTRODUCTION

The relay channel [1] is a classic information theory prob-
lem which has experienced a renewed surge of interest due
to its applicability to a vast variety of modern communica-
tion systems, including but not limited to traditional satellite
relays, internet-of-things (IoT) network architectures, and self-
backhauling techniques considered in 5G and beyond [2].

While the capacity of the general relay channel model
remains an open problem, many practical scenarios, e.g., IoT
and wireless self-backhauling [2], can be modeled as a simpler
separated relay channel, which essentially concatenates two 1-
hop channels while assuming that the destination cannot hear
the source directly. See Section II for details. The capacity
of this arguably more relevant model is C = min(C1, C2)
and is achievable by the decode-&-forward (DF) policy [1].
While the capacity of the separated relay channel is well
understood, with the recent focus on ultra-low-latency, e.g.
sub-1ms in 5G URLLC [3], this work studies the delay of
separated relay channels and we ask the following question:
For a fixed throughput requirement, what is the transmission
scheme that minimizes end-to-end delay? Broadly speaking,
our work can be viewed as the multi-hop-relay counterpart for
the finite-length analysis of the point-to-point channel in [4].

Existing finite-length analysis works [5]–[7] are based on
well-known relay policies like DF, compress-&-forward, etc.
While the schemes in [5]–[7] may perform well in a general
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relay channel model, none of them can outperform DF once
we are limited to the separated relay channels, for which DF is
already capacity achieving. To explore the optimal throughput-
delay tradeoff (not limited by any existing designs), [8] devised
a new scheme called transcoding (TC) that substantially
outperforms both DF and amplify-&-forward (AF) in the finite
blocklength regime. Fig. 1 plots the throughput-delay tradeoff
of TC [8] using either Gallager’s error exponent analysis
or the channel dispersion results in [4]. The details of the
computation of the curves were provided in [8].
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Fig. 1: Finite-blocklength results from [8] in which transcoding
(TC) is presented. (a) per the error exponent analysis and (b)
per the channel dispersion approximation.

The work in [8] provided a new construction and insight
about how to improve the finite-length performance in the
small-delay regime. However, a closer look at Fig. 1 shows
that DF still outperforms TC when the delay is ≥ 350 symbol
(bit) durations. To complement the small-delay results in [8],
this paper aims to characterize the best possible throughput-vs-
delay performance in the asymptotic long-delay regime. Key
contributions of this paper are as listed as follows.

A new problem formulation. We consider an L-hop line
network and introduce a new problem formulation and a new
concept called Delay Amplification Factor (DAF) for any given
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Fig. 2: L-hop line network

scheme. DAF quantifies the multiplicative increase of the end-
to-end delay that arises when sending information over L hops
as compared to the delay experienced by transmitting only over
a single hop, more precisely, the bottleneck hop.

DAF analysis without feedback. We construct a scheme
with DAF = 1, provided that the bottleneck hop is the last
hop, i.e. the optimal end-to-end delay of an L-hop network
is asymptotically comparable to the delay over its bottleneck
hop in this scenario. The conventional belief that the delay of
an L-hop relay channel grows linearly with respect to L is
thus likely an artifact of the underlying DF policy.

DAF analysis with one-time stop feedback. It is known
that 1-bit stop feedback significantly reduces the expected
delay for point-to-point channels [9]. We show that similar
delay benefits hold for multi-hop relays. Specifically, the
aforementioned result is promising (DAF = 1) but is under
a restrictive setting (bottleneck is the last hop). We prove that
with the addition of one-time 1-bit stop feedback from the
destination back to the source, optimal DAF = 1 is achievable
regardless of the location of the bottleneck. That is, the number
of hops in a line network has no fundamental multiplicative
delay impact in the asymptotically-small-error-rate regime.

II. THE DELAY AMPLIFICATION FACTOR OF MULTI-HOP
RELAY CHANNELS

We consider the L-hop line network in Fig. 2 with slotted
transmission for t = 1, 2, . . .. One symbol is sent in each time
slot. Each hop is discrete and memoryless and we denote the
input and output symbols of the l-th hop at time slot t as Xl(t)
and Yl(t), respectively. Denote the capacity of the l-th hop by
Cl (unit: nats/slot). For ease of exposition, we assume Cl <∞
for all l and assume a unique bottleneck hop l∗, i.e. ∃l∗ such
that Cl > Cl∗ ,∀l 6= l∗. The overall capacity is then C = Cl∗

and we assume Cl∗ > 0. Lastly, we denote the random coding
error exponent [10] of hop l by1 Erc,l(R).

Technical assumptions: We assume that the l-th hop channel
distribution pl(yl|xl) > 0 for all l ∈ [1, L] and all input/output
symbols xl and yl. This ensures that Erc,l(R) behaves properly
without running into any corner cases. We can relax this
assumption (e.g., to include binary erasure channels in our
setting) by the conditions (a) and (b) in [10, p. 71].

Source s wishes to send an integer message M , drawn uni-
formly randomly from M = {1, 2, . . . , |M|} to destination
d using the following transmission scheme.

Starting times and duration. A sequence of L determinis-
tic, non-decreasing time points τ1 = 0 ≤ τ2 ≤ · · · ≤ τL

1A more appropriate notation of the (optimal) random coding error ex-
ponent would be Erc,l(R,Q

∗(R)), where Q∗(R) is the optimal prior
distribution at the given rate R. However, for notational simplicity, we use
Erc,l(R) , Erc,l(R,Q

∗(R)) as shorthand.

Fig. 3: Starting times, transmission duration, and encod-
ing/decoding timepoints for an example scheme (unit: slots).

determines the starting times (unit: slots) of data transmis-
sion for the corresponding hops. The total duration of the
transmission at each node is denoted as Tdur (unit: slots).
Fig. 3 gives an example for Tdur = 9 and starting times
τ1 = 0, τ2 = 2, τ3 = 3, and τ4 = 6 over L = 4 hops.

Sequential encoding at the relay nodes. We assume full-
duplex relays with causal encoding. That is,

X1(t) = f
[1]
t (M), ∀t ∈ (τ1, τ1 + Tdur] (1)

Xl(t) = f
[l]
t ([Yl−1]

t−1
∗ ), ∀l ≥ 2, ∀t ∈ (τl, τl + Tdur] (2)

where f [l]
t is the encoder of the l-th hop at time slot t, and

[Yl−1]t−1
∗ ,

{Yl−1(τ) : τ ∈ (τl−1,min(t− 1, τl−1 + Tdur)]} (3)

denotes all previously received observations from the upstream
hop.

Block decoding at the destination. The final block-based
decoding function is given as

M̂ = g([YL]τL+Tdur
∗ ). (4)

Definition 1: An L-hop line network scheme, described
by the aforementioned three components, attains a delay-
throughput-error-rate tuple (T,R, ε) if

T ≥ τL + Tdur (unit: slots) (5)

R ≤ ln(|M|)
Tdur

(unit: nats/slot) (6)

ε ≥ P
(
M̂ 6= M

)
. (7)

For any given scheme Φ, we use AΦ as the collection of
all tuples (T,R, ε) that can be attained by scheme Φ.

Definition 2: The error exponent of scheme Φ is defined as

EΦ(R) , lim sup
T→∞

sup
ε:(T,R,ε)∈AΦ

− ln(ε)

T
. (8)

A few remarks are in order at this stage.
Remark 1: When L = 1, our definition includes the

traditional finite-length analysis [4] as a special case, since



τ1 = 0 and since Tdur is simply the block length. For arbitrary
L, it includes DF as a special case by setting τl+1 = τl+Tdur,
i.e., each relay starts transmitting only after the upstream hop
is finished.2

Remark 2: The throughput defined in (6) uses Tdur in the
denominator rather than (τL + Tdur). This is because we
allow the throughput to be enhanced by pipelining, which
is illustrated by dotted lines/text in Fig. 3. One can see
that the encoding of the next message starts before the rest
of the network finishes the current message. Allowing for
pipelining is crucial since it enables fair throughput assessment
for schemes like DF and block Markov coding.

We are interested in the delay when operating at rates
arbitrarily close to the capacity, i.e., R ↗ Cl∗ , and deem
any not-capacity-achieving schemes as uninteresting. This thus
leads to the following definition of the DAF.

Definition 3: The Delay-Amplification-Factor (DAF) of an
L-hop communication scheme Φ is defined as

ΓΦ , lim
R↗Cl∗

Erc,l∗(R)

EΦ(R)
. (9)

The rationale behind is that in the asymptotic regime (a
fixed but infinitesimal ε) the smaller the error exponent is,
the longer the delay needed to attain the target ε. Therefore,
Erc,l∗(R) is generally larger than EΦ(R) since the former
focuses on the delay over the bottleneck hop and the latter
focuses on the longer end-to-end delay. The ratio thus signifies
the multiplicative delay impact of scheme Φ when compared
to the delay experienced by the bottleneck hop. We then have

Lemma 1: Regardless of the scheme Φ, we always have

ΓΦ ≥ 1. (10)

Lemma 2: For decode-&-forward (DF) schemes, we have

ΓDF =

L∑
l=1

Cl∗

Cl
. (11)

The intuition behind these lemmas is as follows. Since the
optimal delay of an L-hop line network is no better than the
optimal delay over its bottleneck hop, DAF is lower bounded
by 1 due to the sphere-packing bound results. Using DF to
send a B-nats message over all L hops takes roughly

∑
l
B
Cl

symbols and it takes only B
Cl∗

symbols to send through the
bottleneck hop. Being the ratio of the delays, the DAF of DF
becomes (11). The proofs are omitted due to space limits.

Comparison to existing results: [7] characterizes the error
exponent of (L = 2)-hop relays under DF, partial DF (PDF),
and compress-&-forward (Comp-F). Block Markov Coding
(BMC) is analyzed where b ≥ 2 is the number of blocks. The
parameter b decides the effective throughput Reff = b−1

b R and
in our setting we can always assume Reff = R since we recover
any effective throughput reduction of BMC by pipelining.

2This high-level discussion assumes C1 = C2 = · · · = CL. If not, the
proposed framework can still fully represent DF but the values of τl and
Tdur need to be carefully chosen since hops with larger Cl will finish their
transmission sooner and thus do not need to use up the entire Tdur.

Fig. 4: Inner/outer code transmission scheme. (Example drawn
for L = 3 and K = 3)

Then a close look at [7] shows that the error exponents of DF,
PDF, and Comp-F all exhibit a reduction factor 1

b (thus at least
1/2). Plugging in the DAF definition (9), the corresponding
DAF ≥ 2, which is consistent with (11) (assuming C1 = C2)
since the delays of DF, PDF, and Comp-F, all grow linearly
with respect to L. (L = 2 in this discussion.)

III. MAIN RESULTS

A. The Optimal DAF without Feedback

Proposition 1 (Optimal DAF): If l∗ = L, then we can
construct a transcoding scheme Φtc such that ΓΦtc = 1.

Proposition 2: For the case of l∗ 6= L, define l∗0 = 0 and
iteratively define l∗i = arg minl∈(l∗i−1,L] Cl for i = 1, 2, 3, · · ·
until l∗i = L. Suppose there are I such l∗i , i.e., l∗I = L. Also
assume the minimum is unique when computing each l∗i . Then
we can construct a scheme Φ such that

ΓΦ =

I∑
i=1

Cl∗

Cl∗i
. (12)

We can prove that (12) is strictly less than (11) except for
the case of C1 < C2 < · · · < CL. That is, if l∗ 6= L, even
though we do not know how to attain the lower bound DAF ≥
1, we can design a scheme with strictly smaller DAF than the
DF scheme (i.e., having strictly shorter asymptotic delay) in
all but the special case of C1 < C2 < · · · < CL. Proposition 2
can be proved by combining the DF principle and the scheme
Φtc in Proposition 1. We omit the details due to space limits.

We now sketch the proof of Proposition 1. Our scheme is
inspired by the transcoding design [8] and the concatenated
coding structure [11], [12]. In the sequel, we assume l∗ = L,
use Fig. 4 for illustration, and use the term micro-block when
referring to the “inner block code” in our design.

Choosing the parameter K. For any R < Cl∗ = CL, we
choose the largest integer K ≥ 1 simultaneously satisfying

K · Erc,L(R) < min
l∈[1,L−1]

Erc,l(CL) (13)

K · (CL −R) ≤ CL. (14)

Note that this choice of K is always possible when we start
with an R that is sufficiently close to CL. Furthermore, when



R ↗ CL, we have K → ∞. In the following discussion, we
assume a fixed R < CL and thus a fixed K.

Operation at the source s. Consider K micro-blocks,
each containing ∆ symbols. For each micro-block, we con-
struct a random codebook of rate RI using the capacity-
achieving marginal distribution P ∗X1

for hop-1. We set the
value RI = CL. Each codebook has e∆RI codewords and
is constructed independently randomly from other random
codebooks. Fix the K codebooks and denote the i-th codeword
of the k-th codebook by c

[k]
i , a length-∆ row vector, where

i = 0, · · · , e∆RI −1. We now define a cyclically shifted outer
code (CSOC) as a collection of length-(K∆) row vectors:3

CO =

{
(c

[1]
i1
, · · · , c[K]

iK
) :

(
K∑
k=1

ik mod eK∆(RI−R)

)
= 0

}
(15)

Namely, each codeword of CO is a concatenation of K

codewords, c[k]
ik
,∀k = 1 · · · ,K, each from a different inner

codebook, such that the sum of the subscripts
∑K
k=1 ik is a

multiple of eK∆(RI−R).
We then note that in general, a modulo-x operation “slices”

the overall space into x equal-sized partitions. Since the
total space of (i1, · · · , iK) is of size eK∆RI , the modulo-(
eK∆(RI−R)

)
operation thus ensures that the codebook CO has

eK∆RI/eK∆(RI−R) = eK∆R codewords, provided we assume
some very mild divisibility condition.

Since there are eK∆R codewords, the source s uses CO to
send a message M ∈ [1, eK∆R] over the first hop, which takes
Tdur = K∆ time slots to finish. The description of the source
encoding function f [1]

t in (1) is complete.
Operation of the l-th relay with l ≥ 2. Decode-&-forward

(DF) is performed at hops 2 to L on a mico-block basis using
the inner codebooks. Specifically, at the beginning of the k-
th micro block (time t = k∆ + 1), each relay will use the
random inner codebook of its upstream hop to DECODE the
index ik−1 ∈ {1, 2, · · · , e∆RI} transmitted by its upstream
node in the previous micro-block (the (k − 1)-th).

Then it will generate its own random inner codebook of
rate RI using its own capacity-achieving marginal distribution
P ∗Xl

. In total there are e∆RI codewords in this codebook and
we denote the i-th codeword by c

[k]
i , which is a length-∆ row

vector for all i = 0, · · · , e∆RI −1. The superscript k signifies
that this random codebook, generated by hop l, is used only for
the k-th micro-block. For the next micro-block, a completely
new random inner codebook will be generated by hop l. After
the creation of the inner codebook, the l-th relay FORWARDS
the decoded ik−1 by sending c

[k]
ik−1

. See Fig. 4 for illustration.
Operation at the destination d. At the end of time t =

((L−1)+K)∆, all the inner micro-blocks have been sent from
s to d by DF, see Fig. 4. Destination d then performs optimal
maximum likelihood (ML) decoding assuming the knowledge

3Technically, an outer codebook [11] should be a collection of
(i1, i2, · · · , iK) and the length-K∆ vector (c

[1]
i1
, · · · , c[K]

iK
) is the end result

after concatenating the outer and the inner codes. For ease of exposition, we
abuse the notation and define CO as in (15).

of all channel statistics pl(yl|xl), all the K · L inner random
codebooks, and the CSOC used at source s.

The rest of the proof is to analyze the performance of the
above scheme. The main argument hinges on the fact that
since the K value satisfies (13), the error rate of DF during
hops 1 to (L−1) is negligible when compared to the errors in
the last hop once we let ∆ → ∞. Fig. 4 illustrates this with
the difference in color between the green micro-blocks on the
first L − 1 hops and the red micro-blocks on the bottleneck
hop. As a result, the dominant error event can be analyzed by
assuming all first (L− 1) hops are error-free and by carefully
characterizing the joint effects of the CSOC outer code and
the random inner codes at the L-th hop. The detailed analysis
is similar to the results in [13].

Letting ∆→∞, we have the error exponent being

Erc,Φtc(R) =
K

K + L− 1
Erc,L(R). (16)

The final step is to notice that when R↗ CL the correspond-
ing K → ∞ simultaneously, which completes the proof of
Proposition 1.

Remark 3: Concatenated coding for line networks was also
used in [12] under a half-duplex, Gaussian channel setting.
Nonetheless, a suboptimal two-stage hard decoding (decode
the inner codes first, and then use the hard decisions to decode
the outer code) was used in [11], [12], which significantly
decreases the error exponent (see [11, Eq. (101)]) and is thus
strictly suboptimal. In contrast, we prove that with our CSOC
design, joint ML decoding at d attains the optimal DAF = 1.

B. The Optimal DAF with one-time stop feedback

We now change our formulation to allow for one-time one-
bit stop feedback. For this, we fix τ1 = τ2 = · · · = τL = 0
and allow Tdur to be a stopping time of the filtration generated
by [YL]t1. The encoder and decoder definitions from (1)–
(4) remain identical. We replace the delay and throughput
requirements in (5) and (6) by

T ≥ E [Tdur] (unit: slots) (17)

R ≤ ln(|M|)
E [Tdur]

(unit: nats/slot). (18)

The error probability definition (7) and the error exponent
definition (8) remain the same.

The above mathematical formulation models the following
operations. The destination d can decide when to stop the
whole “session” and start decoding the message M̂ . Once the
stop decision is made, a 1-bit stop feedback message [9] is sent
from d back to s, which propagates backwards through the line
network. The entire network, including the source, the L− 1
relays, and the destination, will then switch to the transmission
of the next message. This variable-length setup is closely
related to the concepts of hybrid-ARQ and digital fountain
codes. Note that no feedback of any other form, e.g., per-
symbol-feedback, per-hop feedback, relay-initiated feedback,
etc., is ever allowed. The justification is that feedback is
very costly from a delay’s perspective. Arguably, the only



feasible option is the simple one-time, end-to-end, one-bit stop
feedback.

Results in [9] show that for a point-to-point channel, stop
feedback improves the random-coding error exponent from
Erc,l(R) to a strictly larger value

Esf,l(R) = (Cl −R)+ (19)

which we will use in the following new definition of the DAF
for variable-length coding.

Definition 4: The DAF on an L-hop variable-length stop-
feedback scheme Φ is defined as

ΓΦ , lim
R↗Cl∗

Esf,l∗(R)

EΦ(R)
= lim
R↗Cl∗

Cl∗ −R
EΦ(R)

. (20)

Our second main result can then be stated as follows.
Proposition 3: We can construct a stop-feedback transcod-

ing scheme Φsftc such that ΓΦsftc
= 1 regardless of whether

l∗ = L or not.
For ease of exposition and due to space constraints, we de-

scribe some key components of Φsftc without detailed scheme
descriptions.

Component 1: Concatenated coding with Sequential Ran-
dom Permutation Outer Codes (SRPOC). Random inner codes
are used for each micro block in the same way as in the fixed-
length scheme Φtc. But Φsftc replaces the fixed-length CSOC
outer code with a SRPOC outer code that continuously picks
new index ik for the k-th micro block and transmits codeword
c

[k]
ik

from the k-th inner codebook.
Component 2: Sequential probability ratio test (SPRT). In

part of our design, we apply the well-known technique of
SPRT to the (sequential) concatenated coding with SRPOC
and random inner codes. Some related results can be found
in [9], [14], which analyzed SPRT but based on a non-
concatenated random code construction.

Component 3: Micro-block-based DF. Similar to Φtc, we
perform micro-block-based DF in Φsftc.

Component 4: The correction phase. We notice that micro-
block-based DF operates on a smaller block length ∆ and
is thus subject to higher error rate. As a result, the relay
node, in particular the receiver of the bottleneck hop, would
continuously use SPRT and SRPOC+inner-code to decode
the message with lower error rate, in parallel to the inner-
code-based DF. After obtaining the higher-fidelity decision M̂
(based on SPRT and SRPOC), the relay will compare it to the
past inner-code-based DF decisions. New “correcting signals”
will then be sent to rectify the erroneous DF decisions made
in the past. Note that this correction phase does not require
any feedback and the relay(s) simply run SPRT+SRPOC in
parallel with the inner-block DF and correct past erroneous
decisions on a need basis.

Component 5: Carefully generated control messages. The
overall scheme Φsftc is highly non-linear and requires passing
crucial control information from the upstream to the down-
stream nodes, e.g., when to start the correction phase if the
need arises, in a way similar to running a network protocol
over the line network. Since there is no separate control

channel, any control messages must be carried in the forward
data channel. As a result, the format of the control messages
needs to be carefully designed in order to manage the control
overhead in terms of both throughput and delay.

IV. CONCLUSION & FUTURE WORK

We introduced and analyzed the Delay Amplification Factor
(DAF) for L-hop line networks in this paper, which is moti-
vated by our investigation into the best possible throughput-
vs-delay relay performance started in [8]. While the work
in [8] covered the small-delay regime, this text focused on the
asymptotic regime and designed DAF-optimal coding schemes
for some scenarios of the L-hop line networks, see Table I.
A future direction is to characterize the optimal feedback-free
DAF when the bottleneck hop is not the last, i.e., l∗ 6= L.

l∗ = L l∗ 6= L
w/o feedback This work: DAF = 1 Optimal DAF remains open
w/ stop feedback This work: DAF = 1 This work: DAF = 1

TABLE I: Problem space breakdown for asymptotic analysis
of delay/throughput tradeoff for L-hop line networks. l∗ is the
bottleneck hop.
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