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Abstract— The relay channel is a traditional information-
theoretic problem which has important applications in the
Internet of Things (IoT) and other future communication net-
works. In this work, we focus on the simplest possible relaying
model: the so-called separated (or two-hop) relay channel where
there is no direct link between the source and the destination.
Previous work has shown that for this channel, the decode-and-
forward (DF) relaying strategy is capacity-achieving under the
assumption of asymptotic block lengths. In this paper, however,
we are interested in the finite-delay regime where simpler
sub-optimal techniques like amplify-and-forward (AF) can be
used to avoid the need for buffering at the relay. We present
a new strategy called transcoding which presents a tradeoff
between the low-latency advantages of amplify-and-forward
and the high-rate, high-latency decode-and-forward scheme.
Our results indicate that our simple, intuitive transcoding
schemes outperform traditional relaying schemes in the finite-
delay regime.

I. INTRODUCTION

Arguments about the Shannon capacity of a communica-
tion channel typically involve the assumption of a channel
code with infinite blocklength. Practical communication sys-
tems, however, are always bound to coding schemes with
a finite number of symbols per block. The impact of this
restriction on the achievable rate was studied in [1] for
single-hop communication systems. It is of no surprise that
the tight bound on the block error probability discovered
in [1] increases as the blocklength decreases. In addition to
the interest from the academic community, the performance
characteristics of finite-blocklength systems are of interest
to industry, with low latency systems being one of the key
technology goals for the upcoming fifth-generation (5G)
wireless standards [2].

This paper seeks to apply the lessons learned from the
analysis of finite-blocklength systems to relay channels. The
relay channel model applies in some form to most of the
commercially available communication systems today and
has been of considerable interest to the academic commu-
nity since the 1970s [3], [4]. Throughout the years several
different relaying techniques have emerged in the literature,
including compress-and-forward [5], hash-and-forward [6],
compute-and-forward [7] and noisy network coding [8].
However, the two most well-known techniques are decode-
and-forward [4], [9], where the relay node decodes the data
it receives and forwards the decoded data, and amplify-
and-forward [10], where the relay simply scales and re-
transmits its received symbols. For simple relaying models it
is known that decode-and-forward is optimal from a capacity

perspective and amplify-and-forward is optimal in terms of
delay.

The analysis of relay channels in the context of finite block
lengths became a topic in academia fairly recently, with only
a limited number of publications on the topic. Works such
as [11] and [12] explore the capacity of these systems under
the decode-and-forward scheme and a cooperative two-hop
setting, which implies a direct link between the source and
the destination. Work in this area has also considered multi-
hop scenarios [13], [14]. The commonalities of most of the
prior work in this field are twofold:

1) Most of the work was written in the context of wireless
communication systems and Rayleigh fading channel
models.

2) To the best of our knowledge, all of the work in
the field has centered around the analysis of existing
relaying strategies (DF, AF, etc.) which are optimal
only in asymptotic blocklength regimes.

In contrast, this paper presents a new strategy for the
relaying problem, designed with finite blocklengths in mind.
This strategy, dubbed transcoding, presents a new mid-
dle ground between the low-latency amplify-and-forward
approach and the high-latency, computationally intensive
decode-and-forward technique. Our focus is on the tradeoff
between achievable rate and delay across the relay channel
and we present results indicating increased performance over
DF and AF at equal delay. Our strategy is based on intuitive
ideas from the concatenated coding literature applied to the
relay channel model.

The rest of the paper is organized as follows. In Section II,
we give an outline of our system model and problem
statement. In Section III we give a general description
of the transcoding idea. Section IV presents an example
of transcoding over a relay channel consisting of binary
symmetric channels compared to the decode-and-forward
scheme. Finally, we conclude and discuss future work in
Section V.

II. PROBLEM SET-UP

This work focuses on the two-hop relay channel model
(sometimes referred to as a separated relay), which is
depicted in Figure 1. We assume direct links between the
source and the relay as well as between the relay and
the destination. There is no direct link between the source
and the destination. We further assume discrete memoryless
channels between all nodes. We suppose that the source



wishes to transmit L information bits to the destination,
which we write in vector notation as s = [s0, · · · sL−1]

T.
This information is transmitted by the source in the form
of blocks of channel symbols xS,t ∈ XS , where XS rep-
resents the input alphabet of the source-to-relay channel
and t denotes a time index. We assume that these coded
blocks xS = [xS,t, xS,t+1, · · · , xS,t+δS−1]

T contain δS
symbols and that each symbol is transmitted over a period
of T1 seconds. The source obtains xS from its information
symbols by the application of some encoding operation S(·),
i.e., xS = S(s). The transmit blocks enter the source-to-relay
channel and emerge at the relay as input vector yR, where
each element, denoted yR,t is drawn from the channel’s
output alphabet YR. The relay operates on blocks of symbols
of size δR,Q, which we will refer to as “sub-block”. We
denote the k-th received sub-block at the relay node as yR,k.
We further assume that a transmit block consists of K sub-
blocks, i.e. δS = KδR,Q and yR =

[
yT
R,0, · · · yT

R,K−1
]T

.
For every received sub-block, the relay forwards a deter-

ministic mapping xR,k = R(yR,k) through the next channel
to the destination, where xR,k consists of δR,C symbols
drawn from some input alphabet XR with a transmit period
T2. We thus have for a full block transmitted from the relay
to the destination,

xR =
[
xR,t, · · · , xR,t+KδR,C−1

]T
=
[
xT
R,0, · · · , xT

R,K−1
]T

=
[
R(yR,0)T, · · · , R(yR,K−1)T

]T
. (1)

The destination then observes its channel output vector yD,
drawn from some alphabet YD. It applies a decoding function
D(·) to this received vector to obtain its estimate of the
information symbols, denoted as ŝ = D(yD). We declare
a codeword error when ŝ 6= s.
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Fig. 1. Two-hop (separated) relay channel

As indicated in Fig. 1, one straightforward abstraction in
this set-up is to view the concatenation of the source-to-
relay channel, the mapping at the relay R(·), and the relay-
to-source channel as an effective “superchannel”, a term
borrowed from the literature on concatenated coding [15].

The goal of this work is to present a new way of thinking
about the design of channel codes for models like this. Our
focus is furthermore on the tradeoff between the achievable
rate and the total delay over the superchannel. The first
question to ask is then, “What are the sources of delay in
this model?” The answer is that, clearly, delay is introduced
at two points in the model.

1) At the source, which transmits a block of δS channel
symbols with symbol period T1.

2) At the relay, which first accumulates δR,Q symbols and
then transmits a block of δR,C symbols with symbol
period T2.

A straightforward definition of the overall delay in our
system model is then given as

∆ = T1δS + T2δR,C , (2)

where we note that the symbol periods T1 and T2 must satisfy
T1δR,Q = T2δR,C , i.e., the transmission periods for received
and transmitted sub-blocks at the relay must be of the same
length. Furthermore, the achievable rate in units of bits per
channel use is given as

Rtotal =
L

T1δS
. (3)

The model from Fig. 1 is held intentionally general and can
be applied to a variety of relaying techniques. For example,
with the decode-and-forward relaying strategy, we are limited
to choices of block lengths that satisfy δS = δR,Q. The
relay forwards decoded and re-encoded sub-blocks to the
destination as soon as they are received. This limitation
causes increased delay over the superchannel, a concept
illustrated in Fig. 2. Here, the total delay between the start
of the encoding operation at the source and the time when
the destination extracts its message satisfies

∆DF = T1δS + T2δR,C

= 2T1δS . (4)

Start encode

T1δS T2δR,C

Start encode

Extract msg

Source Tx

Relay Tx

Fig. 2. Sources of delay with the decode-and-forward strategy

In contrast, the amplify-and-forward strategy (shown in
Fig. 3) fixes δR,Q = δR,C = 1, which leads to a low overall
delay. The strength of the model given in this section is that
it allows us to describe more general relaying schemes than
amplify-and-forward and decode-and-forward. The scheme
from Section III exploits this flexibility and presents a middle
ground between the high throughput, high delay extremum
(decode-and-forward) and the low throughput, low delay
extremum (amplify-and-forward).
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Fig. 3. Sources of delay with the amplify-and-forward strategy

At this point we should note that the relationship between
the achievable rate and the total delay is more subtle than (2)
and (3) seem to indicate. The achievable rate is, of course,
coupled to the desired average probability of block error
(denoted as ε), which decreases as δS increases. Thus, the
main question that this work seeks to answer is then, “Given
a desired average probability of error ε, what is the tradeoff
between the achievable rate Rtotal and the maximum allowed
delay ∆ across the relay channel for different relaying
strategies R (·)?”

Some intuitive insight into this question can be gained
from Cover and El Gamal’s seminal paper on relay chan-
nels [4]. Suppose we are interested in the extreme case with
ε→ 0. Theorem 1 in [4] shows that we can communicate at
capacity with a decode-and-forward scheme where δS →∞.
The case for fixed ε > 0 and fixed delay is less clear and
our discovery of the transcoding principle shows that there
is room to increase our rate with smart relaying techniques.

III. THE TRANSCODING PRINCIPLE

The main idea of the transcoding principle is to allow
the relay to perform an arbitrary multidimensional mapping
from its input symbols to its output symbols. More specifi-
cally, the relay function can be any function satisfying

R(·) : (YR)δR,Q 7→ (XR)δR,C . (5)

This can be seen as a more general approach than decode-
and-forward, which is restricted to decoding and possibly re-
encoding its received sub-blocks. When designed properly,
these arbitrary mappings have the potential to increase the
achievable rate over the superchannel. Fig. 4 illustrates
the total delay over the superchannel with the transcod-
ing strategy. Here, the relay processes sub-blocks of sizes
1 ≤ δR,Q ≤ δS , which results in better delay performance
than decode-and-forward without sacrificing the ability to
correct some errors at the relay.

Start encode

T1δS T2δR,C

Start encode

Extract msg
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Fig. 4. Sources of delay with the transcoding strategy

To enable these mappings at the relay, the source first
encodes its L message symbols with a capacity-achieving
block code, the outer code, of rate Router = L/L1 and then
encodes K sub-blocks of its length-L1 codeword with a rate
Rinner = L2/δR,Q inner code, where L1 = KL2 and δS =
KδR,Q. This operation is visualized in Figure 5.

s0 · · · sL−1

s̃0 · · · s̃L2−1 · · · s̃L1−L2
· · · s̃L1−1

xS,0 xS,δR,Q−1· · · · · · xS,δS−δR,Q
· · · xS,δS−1

δS
δR,Q

Fig. 5. Block coding at the source

The relay then processes codewords of the inner code
and, instead of simply decoding or amplifying, forwards an
arbitrary deterministic mapping of the received codeword to
the destination. The idea here is that a smart joint design of
the outer code and the mapping of the inner code will out-
perform less sophisticated schemes. Furthermore, similar to
decode-and-forward schemes, the mapping can be designed
to match the two channels at each end of the relay. As a
further point of intuition, a well-designed mapping function
could be used to correct only a subset of errors introduced
by the first channel, leaving the rest to the outer code at the
destination.

The transcoding principle is best explained with a specific
example of a mapping function. Suppose, for simplicity,
that all channel alphabets are binary and both component
channels of our superchannel are binary symmetric channels.
Furthermore, suppose that the codeword space of the inner
code is a subspace of space of all sequences of binary digits
of length δR,Q with the Hamming distance metric. Fig. 5
shows as an example a space with three codewords (the
filled black circles) separated by some minimum distance
dmin. The crosses represent two different received sub-blocks,
corrupted by the source-to-relay channel. In our example
mapping, the relay transmits the codeword corresponding to
the received sub-block, as long as the received sub-block
is within some radius dTC (dashed circle around codeword
1) of a valid codeword. In the depicted example, the relay
would forward codeword 1 upon reception of the “blue” sub-
block, correcting the errors introduced by the source-to-relay
channel.

For cases in which a received sub-block falls exactly
between two valid codewords (red cross in Fig 6), there are
two potential courses of action:

1) Forced decoding
With this strategy, the relay always transmits a valid
codeword, i.e. for the “red” sub-block, the relay would
choose between codewords 1 and 2 with equal proba-
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Fig. 6. Sub-block mapping at the relay

bility.
2) Partial decoding

With this strategy, the relay transmits sub-blocks not
within dTC of any valid codeword as-is, without any
correction. This results in a propagation of those errors
to the destination. Sub-blocks close enough to valid
codewords are corrected as described above.

It is evident that with this example mapping our delay
distribution is δR,Q < δS . As the example in Section IV will
show, the partial decoding technique provides better perfor-
mance than the forced decoding technique. This observation
seems to verify our intuition: If the relay cannot decode a
sub-block (as is the case for the red sub-block in Fig. IV),
letting the longer outer code take care of the errors is less
costly than decoding the wrong codeword.

Note that the example given in this paper is of course
only one out of many possible options for the mapping
function R(·). In practice, deriving a good mapping is a
design problem which will consist of some combination of
heuristics and computer-based search methods. Properties of
“good” mapping functions will most likely involve a notion
of algebraic structure and, depending on the application, a
short sub-block length.

IV. TRANSCODING FOR THE BINARY SYMMETRIC
CHANNEL

The example in this section seeks to illustrate the ad-
vantages of simple transcoding schemes when compared
to the traditional DF and AF techniques. We model both
channels (source→ relay and relay→ destination) as binary
symmetric channels with transition probabilities p1 and p2,
respectively. The input and output alphabets on all nodes
thus consist of binary digits, i.e. XS = YR = XR =
YD = {0, 1}. In Figs. 7 and 8, we compare the rate-
blocklength tradeoff using both Gallager’s random coding
exponent [16] and Polyanskiy’s normal approximation of the
coding theorem [1]. Using either framework, we compute the
achievable rate over the superchannel as follows:

1) Fix the desired average probability of error ε
2) For a given relaying strategy R (·) with sub-block sizes

δR,Q and δR,C , compute the transition probabilities of
the superchannel p(j | k)

3) Find the block size δS and input distribution Q which
give the desired error probability over the superchannel

4) The delay over the superchannel is then given by (2)
and the achievable rate by (3)

In Fig. 7 (Gallager bound), the result of step 3 was
obtained by assuming a uniform input distribution Q and
finding the δS which maximizes [16]

Pr(ŝ 6= s) = ε ≤ exp [−δSEr(Rtotal)] , (6)

where the error exponent Er(Rtotal) is given as

Er(Rtotal) = max
0≤λ≤1

max
Q

Eo(λ,Q)− λRtotal. (7)

Here, an optimization has to be performed over λ, the
channel input distribution Q, and

Eo(λ,Q) = −ln
J−1∑
j=0

[
K−1∑
k=0

Q(k)p(j | k)1/(1+λ)

]1+λ
. (8)

In Fig. 8 (Gaussian approximation), the result of step 3 was
obtained by again assuming a uniform input distribution Q
and then finding δS which satisfies

L = δSC −
√
δSV Q

−1(ε) +
1

2
log2(δS) (9)

(see [1], Sec. IV). Here, L is, as defined earlier, the number
of information bits at the source, C is the capacity of the
superchannel, Q−1(·) is the inverse of the Gaussian tail
distribution function Q(x) =

∫∞
x

1√
2π
e−t

2/2 dt, and the
channel dispersion V is used as defined in [1], eqn. (239). We
plot our comparison for two different bounds in order to show
that the trends we observe hold for different approximations.

In both figures, we use the (8,4) extended Hamming
code [17] as inner code and plot the rate-blocklength tradeoff
for the partial decoding technique (with dTC = 1) as well as
the forced decoding technique. We fix the error probability to
ε = 10−3 and the component channel transition probabilities
to p1 = 0.04 and p2 = 0.13 for the source-to-relay and
the relay-to-destination channels, respectively. To put the
performance of our proposed techniques in context, we plot
curves for the decode-and-forward scheme and the single-
hop upper bound for this superchannel, which considers a
transmission over a single BSC with transition probability
p = 0.13.

The results presented in Figs. 7 and 8 characterize the
increased performance of the transcoding principle in the
low-delay regime. Even though we observe a crossover point
between the transcoding curves and the ones for decode-
and-forward in both plots, transcoding delivers significant
performance improvements for short blocklengths. In Fig. 7,
we can observe an approx. 16% increase in achievable rate
for 100 ≤ ∆ ≤ 200 when comparing decode-and-forward
with our transcoding example using partial decoding. In
addition, when using the Gaussian approximation (Fig. 8),
we observe an approx. 29% advantage of the partial decoding
scheme over decode-and-forward for values of ∆ around 100
bits. We believe that examples like these show the potential
of smart transcoding techniques, which seek to match the
component channels to the input to achieve greater perfor-
mance in the low-delay regime. Note that we omitted the
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Fig. 7. (Gallager bound) Rate-blocklength tradeoff for p1 = 0.04, p2 =
0.13, and average error probability ε = 10−3. The capacity (achievable
with infinite blocklength and DF) for this superchannel is C ≈ 0.4426.

100 200 300 400

Max. Allowed Delay (bits)

0.05

0.10

0.15

0.20

0.25

0.30

A
ch

ie
va

bl
e

R
at

e

Decode/forward
Partial decoding
Forced decoding
Single-hop upper bound

Fig. 8. (Gaussian approximation) Rate-blocklength tradeoff for p1 = 0.04,
p2 = 0.13, and average error probability ε = 10−3. The capacity
(achievable with infinite blocklength and DF) for this superchannel is
C ≈ 0.4426.

curves for amplify-and-forward from both plots for clarity;
both curves were consistently below any of the alternatives,
which was expected.

The dominance of the partial decoding scheme over
the forced decoding scheme satisfies our intuition that er-
ror propagation is the key to a well-designed transcoding
scheme. With partial decoding only the sub-blocks which
the relay can decode with high likelihood are decoded at the
relay, the rest of the errors are left for the outer code. In
contrast, with forced decoding there is increased potential to
decode whole codewords incorrectly, leading to a decrease
in performance of the outer code. The correct propagation of
transmission errors sets the partial decoding technique apart.

V. CONCLUSION

This paper presented a new strategy for relay channels
with a finite blocklength constraint. The transcoding princi-
ple is based on simple ideas and presents a tradeoff between
the decode-and-forward and amplify-and-forward strategies
from the literature. We numerically compared our techniques
to the state-of-the art and observed increased performance
for the example case of relaying over binary symmetric
channels. This paper serves as an introduction to a whole new
class of previously undiscovered relaying techniques and is
thus meant to inspire future work in many different direc-
tions. There are plenty of unanswered questions about the
transcoding idea at this point. They include the application
of this idea to AWGN and Rayleigh fading models or models
with a direct connection between source and destination.
Other avenues for further research include the construction of
optimal mapping functions and the analysis of their structure.
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